Towards the Measure of Reused Component Cost

N Md Jubair Basha

Assistant Professor, IT Department,
Muffakham Jah College of Engineering & Technology,
Hyderabad, INDIA.
jubairbasha@mijcollege.ac.in

Abstract— Recent practices of software industry demands
development of a software within time and budget which is
highly productive. The demand of component based development
and software reuse is increasing day by day. The issues related to
the estimation of cost reuse measures are still challenging. This
paper presents the cost for the reused components and proposes
reuse measures for the family of applications with the quantized
values. By analyzing these cost measures, the budget and effort in
the development can be reduced. The results are estimated from
the HR Portal domain specific application.

Keywords- components; estimantion; software reuse, domain
engineering

I. INTRODUCTION

Reuse level measures are used to develop the models for
estimating the longer term cost and time savings due to reuse.
This helps in motivating a move to a reuse business and also to
make appropriate investment decisions and trade-offs, related
directly to the overall business goals. In order to achieve these
goals, several models are used to estimate overall quality, cost
and time measures in terms of specific process and application
and component system measures such as reuse levels,
component reuse levels and complexities are needed. In this
paper, several quantitative measures are presented for reused
components to achieve the cost and measures for families of
applications are presented.

The remaining part of this paper is organized as follows:
Section II describes the related work for reuse metrics. The
Section III consists of Software Reuse and Domain engineering
process. The HR Portal application is realized with its
components and their invocations in Section —IV. Section -V
describes the estimation of reuse measures for the components
and the overall application and for the family of applications has
estimated.

II. RevLatED WORK

Reusability metrics defines an approach to measure reusable
components. Several reusability metrics have been proposed in
literature which has less emphasis on quantitative metrics. In
[10] reusability metrics are based upon four characteristics viz.
Self descriptiveness, modularity, portability and platform
independence. However their weights are assumed based on

Dr. M.Chandra Mohan

Associate Professor, CSE Department,
JNTUH College of Engineering,
Hyderabad, INDIA.
c_miryala@yahoo.com

assumed value which is qualitative in nature. In [11] a subset of
reusability metrics are proposed. Though this approach is more
efficient than non-automatable techniques, however the goal is
to reuse the components interfaces only. This approach lacks
the reuse measures at the design level. Zhongjie Wang et.al
[12], proposed that the deficiencies of the components which
are not suitable for reuse has to be redesigned. However no
such approach for the overall system is presented. [15]
proposed only measure for the victim components but for the
family of applications is not presented.

III. SOFTWARE REUSE

Software Reuse is the use of available software or to build new
software from software knowledge. Reusable assets can be
either reusable software or software knowledge. Reusability is a
property of a software asset that indicates it’s probability of
reuse [1]. Software Reuse means the process that use “designed
software for reuse” again and again [2]. By software reusing,
we can manage complexity of software development, increase
product quality and makes faster production in the organization.
Recently, design reuse has become popular with (object-
oriented) class libraries, application frameworks, design
patterns and along with the source code [3]. Jianli et al.
proposed two complementary methods for reusing existing
components. Among them one allows component evolution
itself, which is achieved with binary class level inheritance
across component modules.

The other is by defined semantic entity so that they can be
assembled at compile time or bind at runtime. Although
component containment still is the main reuse model that leads
to contribute the software product lines development [4].
Regarding the components much information has to be
collected, maintained and processed for the retrieval of the
components. Maurizio has proposed a methodology to
automatically build a software catalogue the tools for archiving
and retrieval of information are presented [5].

Software Reuse can be broadly divided into two categories viz.
product reuse and process reuse. The product reuse includes the
reuse of a software component and by producing a new
component as a result of module integration and

Proceedings of the International Conference on Emerging Trends in Engineering and Management
Copyright © 2012 Satpriya Group of Institutions. All rights reserved.
ISBN: 978-981-07-2631-7 doi:10.3850/978-981-07-2631-7_P140

109

International Conference on Emerging Trends in Engineering and Management

construction. The process reuse represents the reuse of legacy
component from repository. These components may be either
directly reused or may need a minor modification. The
modified software component can be archived by versioning
these components. The components may be classified and
selected depending on the required domain. [6].

3.1 Domain Engineering

Software Reuse can be improved by identifying objects and
operations for a class of similar systems, i.e. for a particular
domain. In the context of software engineering domains are
application areas [7].

There are various definitions of what a domain is. Czarnecki’s
defines [8]:” an area of knowledge scoped to maximize the
satisfaction of the requirements of stakeholders, which includes
concepts and terminology understood by practitioners in the
area and the knowledge of how to build (part of) systems in the
area”.

Domain Engineering

Applicatio
System 1

Application
Swystem 2

Spplication
i stem il

Domain Gt % Domait
Analvsis Mlodel
I Get
Llomain E %
Design 554
Diomait Get % Domain

Implementation] Components

q/' Develop

Application Engineering

|:'L New Application System

Figure 1 Process of Domain Engineering

Domain Engineering is a process in which the reusable
component is developed and organized and in which the
architecture meeting requirements of the domain is designed
[9].Domain Engineering can be defined by identifying the
candidate domains and performing domain analysis and domain
implementation which includes both application engineering
and component engineering. Domain Analysis is a continuing
process of creating and maintaining the reuse infrastructure in a
certain domain. The main objective of domain analysis is to
make the whole information readily available. The relevant
components (if available) has to be extracted from the
repository rather than building the new components from the
scratch for a particular domain.

110

Domain Analysis mainly focuses on reusability of analysis and
design, but not code. This can be achieved by building common
architectures, generic models or specialized languages that
additionally improve the software development process in the
specific problem area of the domain. A vertical domain is a
specific class of systems. A horizontal domain contains general
software parts being used across multiple vertical domains.
Mathematical functions libraries container classes and UNIX
tools are the examples of horizontal reuse. The purpose of
domain engineering is to identify objects and operations of a
class in a particular problem domain [7].

In the process of domain analysis, each component identified
can be categorized as follows.

* General-purpose components: These components can be used
in various applications of different domains (horizontal reuse).

» Domain-specific components: They are more specific and can
be used in various applications of one domain (vertical reuse).

* Product-specific components: They are very specific and
custom-built for a certain application, they are not reusable or
only useful to a small extent.

IV. HR PortaL AppLICATION

The system is designed in such a way that the client can interact
with the web tier and business tier and can connect to the Data
Access Object(DAO) component. The web-tier component
consists of the JSP’s and Servlets.The Business tier consists of
the EJB’s.The DAQO’s consists of

the classes with its objects communicating to the database.The
web-tier components are HttpServlet, HRProcessServlet, Login
Servlet, InterviewResultServlet and RegistrationServlet
classes.The Business-tier components are EmployeeBean,
InterviewResultsBean, HRProcessBean are the three stateless

bean classes.The DAO components are BaseDAO,
EmployeeDAO, InterviewDAO, HRDAO, ProcessDAO
classes.

HR Portal
Web

Web HR Portal
Client I S Business Tier

Figure 2: Components of HR Portal Application

Most of the reuse driven approaches often maintains a
repository of reusable components. However an approach is
needed to identify those components which are reused or might
have been used very more. Such components are known as
Non-Victim components.

International Conference on Emerging Trends in Engineering and Management

At any particular point of time, if the designer wants to know
about which part of the system is not effectively reused then a
lookup is to be performed on the component management
relation. A Central repository maintains a table for managing a
component reuse. This table contains two fields. One specifies
the name of the component and the count specifies the number
of times the component was reused by several systems.

Table 1. specifies the list of HR portal system components
which were reused by several applications. If any component is
not used frequently, they are termed as victim components. As
Businesstier component was used only 10 times, it can be a
candidate of victim component. The victim component has to
be reconfigured by dividing it into several parts to increase the
reusability count in future.

Table 1. Component Management Relation

Component Count of Reuse
DAO 36
Web tier 10
Business tier 24

The count of reuse is achieved through by deploying the HR
Portal application on to the Net Beans IDE. By Netbeans
Profile, it facilitates about the how many times a component is
invoked. In that application, how many times the components
are invoked are presented. Considering the count which is
showed in the Figure 2 the reuse cost measures can be
estimated.

‘Sell time [%] ¥

T ABERBECHERH

e

Figure 2.Invocations occurred for different components of HR Portal
Application

III. Estivation oF Reuse CosT MEASURES

Inorder to estimate the reuse cost measure, it is necessary to
know about the number of components available in the related
application. The HR Portal application consists of four
components as described in Section IV. Initially, the cost of a

@]

111

developing typical system without reuse is considered. It can be
represented as follows.

Cho-reuse=Cost of developing typical system without reuse
Whenever the reuse is applied to some portion of the system it
can be designated as R, the software from a set of component
systems.

The Reuse level ‘R’ can be estimated by considering the
number of reused components to the total number of

components in the system.

Number of reused components

Reuse level, R=
Total Number of components in the system

=2/4=0.5
=50%

The Reuse level ‘R’ usually costs less than developing the
whole system from the scratch.

After analyzing the percentage level of reuse components in the
system the relative cost to reuse a component has to be defined,

Fue= Relative cost to reuse a component

Let us assume that the relative cost to reuse a component is 0.2
as default.

With R=50% and F.=0.2, the cost to develop with reuse is
60% of the cost of developing an application without reuse.

The cost to develop an application system with reuse has two
parts. One is the (1-R) part, developed without reuse at the
normal cost. The other is the R part, developed with reuse, at a
lower cost. In order to do this, it is necessary to estimate the
costs separately and add.

Cpart-wilh»reuse:Cno-reuse * (R * Fuse)

Cpan-with—no—reuse:Cno-reuse * (1'R)

Cwilh—reuse :Cparl—wilhfreuse + Cpan—with—no—reuse

Cwilh-reuse = Cno-reuse * (R * Fuse (1‘R))

The cost saved due to reuse

Csaved = Cno-reuse * Cwith-reuse

= Cno—reuse * (1' (R * Fuse (1'R)))

International Conference on Emerging Trends in Engineering and Management

= Cno-reuse * R *(1' Fuse)

The relative development cost-benefit (ROTI) is due to reuse of
components is then estimated to be

Csaved
RO Isaved =

Cno-reuse
=R * (1- Fus)

The relative development cost-benefit(ROI) is 40%
When R=50% and Fs =0.2 , ROLveq is 40%

It is intended to know how much cost is necessary to know
about for creating a new reusable component and manage it.
So, this can be denoted as Fereae.

Feeae = Relative cost to create and manage a reusable
component system.

Here all the developed component systems are used to reuse
part, R percent, of any application system.

Then the cost to develop the component system for R percent is
designated as follows.

Ccomponent-systemszR * Fcreate * Cno-reuse

Since Feeae is much greater than F, it is necessary to reuse
each component and component system several times in several
application systems, to make this worthwhile from a cost
perspective. It has proved from the literature that the different
ranges for Fexe and Fye values depends upon the specific
languages, complexity of the problem area and the relevant
process followed.

Polin[16] suggested the default values of Fqexe and
Fue are 1.5 and 0.2.

If there are ‘n’ application systems in the family, then the cost
saving for the application system family is:

—n*
Cfamily-saved =n Csaved - Ccomponem-syslems

= Cno—reuse * (n * R*(l' Fuse)' R * Fcreate)

Finally the return on investment in creating the set of
components can be considered as follows.

Cfamily-saved

ROI =

Ccomponem»syslems

(n* R*(l- Fuse)' R* Fcreale)

ROI

R* Fcreate

112

(n * (1' Fuse)' R * Fcreale)
ROI =

Fcreale

When Fy.= 0.2 and Feae= 1.5 then

(n*0.8-15)
ROIF —mM8
15

With breakeven point of minimum value i.e. n > 2.

Hence, with the above analysis, the productivity in the
organization can be easily improved by increasing the number
of the application components which are much reusable.

Iv.

Component reusability helps in developing quality product as
the component in the repository is successfully tested. Most of
the reusability metrics proposed in literature or either
qualitative or they realize only interface reusability metrics. In
this paper an effort was made to propose reusable quantitative
measures. The cost for the reused components and non reused
components has been quantified. The measures for the family
of applications is also estimated. With these cost measures, the
budget and effort in the development will get reduced. In
future, strategies to measure the generic domain specific
components can be quantified.

CONCLUSION

ACKNOWLEDGMENT

The work was partly supported by the R & D Cell of
Muffakham Jah College of Engineering & Technology,
Hyderabad, India. The authors would like to thank to all the
people from Industry and Academia for their active support.

V. REFERENCES

[1] William B. Frakes, Kyo Kang: Software Reuse and Research: Status and
Future, IEEE Transactions on Software Engineering”, Vol. 31, No. 7, July
2005

[2] Xichen Wang, Luzi Wang: Software Reuse and Distributed Object
Technology, IEEE Transactions on Software Engineering, 2011.

[3] Sametinger: Software Engineering with Reusable Components, Springer-
Verlag, ISBN 3- 540-62695-6, 1997.

[4] Jianli He, Rong Chen, Weinan Gu: A New Method for Component Reuse,
IEEE Transactions on Software Engineering, 2009.

[5] Maurizio Pighin: A New Methodology for Component Reuse and
Maintenance, IEEE Transactions on Softwrae Engineering, 2001.

[6] Yong-liu, Aiguang-Yang: Research and Application of Software Reuse,
ACIS International Conference on Software Engineeing, Artificial
Intelligence, IEEE, 2007.

International Conference on Emerging Trends in Engineering and Management

[71 N Md Jubair Basha, Salman Abdul Moiz, A.A.Moiz Qyser: Performance
Analysis of HR Portal Domain Components Extraction, IJCSIT, Vol. 2(5),
2011, 2326-2331.

[8] Czarnecki, K., Eisenecker, U.W.:Generative Programming: methods, tools
and applications. Addison Wesley, London, 2000.

[9] Fuqging Yang, Bing Zhu, Hong Mei : Reuse oriented requirements modeling,
Tsinghua University Press, Beizing, 2008.

[10] James F Peters, Witold Pedrycz, “ Software Engineering, An Engineering
Approach”, Wiley India Private Limited, 2007.

[11] Marcus A.S.Boxall, Saeed Araban,” Interface Metrics for Reusability
Analysis of Components”, Proceedings of 2004 IEEE Australian Software
Engineering Conference (ASWEC’ 04).

[12] Zhongjie Wang et.al, “ A Survey of Business Component Methods and
Related Technique”, World Academy of Science, Engineering and
Technology, pp.191-200, 2006.

[13] N Md Jubair Basha, Salman Abdul Moiz, “ A Framework Studio for
Component Reusability”, First International Conference on Information
Technology Convergence and Services 2012, pp.325-335,2012.

[14] N Md Jubair Basha, Salman Abdul Moiz, “ Model Based Software
Development: Issues & Challenges ”, IJCSI Vol.II(1,2) 2012, pp.2231-
5292,2012.

[15] N Md Jubair Basha, Salman Abdul Moiz, “ A Methodolgy to manage
victim components using CBO measure ”, IJISEA Vol.3(2) 2012, pp.87-
96,2012.

[16] Poulin J.S.,” Measuring Software Reuse: Principles, Practices and

Economic Models” Addison-Wesley.

113

